Prepared by Prof. Hui Jiang (CSE3221) 2/27/2007

Pthread Semaphore Pthread Mutex Lock

#include <pthread.h>

» Pthread semaphores for multi-process and multi- E
thread programming: : /*declare a mutex variable*/

pthread_mutex_t mutex ;
— Pthread Mutex Lock
(binary semaphore) [* create a mutex lock */
pthread_mutex_init (&mutex, NULL) ;
— Pthread Semaphore
(general counting semaphore) § /* acquire the mutex lock */

pthread_mutex_lock(&mutex) ;

i [* release the mutex lock */

! pthread_mutex_unlock(&mutex) ;

Il‘ |

Using Pthread Mutex Locks Pthread Semaphores

- . ! #tinclude <semaphore.h>
« Use mutex locks to solve critical section problems: E B

/*declare a pthread semaphore*/
#include <pthread.h> fsem_tsem:
pthread_mutex_t mutex ;
/* create and initialize a semaphore */
pthread_mutex_init(&mutex, NULL) ; sem_init (&sem, flag, initial_value) ;

pthread_mutex_lock(&mutex) ; /* wait() operation */

. . i sem_wait(&sem) ;
[*** critical section ***/ _wait(,)

pthread_mutex_unlock(&mutex) ; 5/* signal() operation */

i sem_post(&sem) ;
3

Dept. of CSE, York Univ. 1

Prepared by Prof. Hui Jiang (CSE3221) 2/27/2007

Using Pthread semaphore CSE3221

Operating System Fundamentals

« Using Pthread semaphores for counters shared by mult iple threads:

#include <semaphore.h>

No. 7
sem_t counter;
N o Deadlocks
sem_init(&counter, 0, 0) ; /*initially 0 */
sem_post(&counter) ; /* increment */ Prof. Hui Jiang

Dept of Computer Science and Engineering
sem_wait(&counter) ; /* decrement */ York University

What is Deadlock? System Model

. . * A set of processes to compete resources
« A set of blocked processes each holding a resource and waiting to P P

acquire a resource held by another processinthe s et. » Resources are partitioned into several types R, R,, . . ., R,
= never change state again — Memory space, CPU cycles, files, 1/0O devices
« Example I:

» Several instances for each resource type:

— System has 2 tape drives. . . .
— All instances for a resource type are identical

— P, and P, each hold one tape drive and each needs another

one. * Request-Use-Release model
* Example II: — Request: the process must wait if the request can not be
— semaphores A and B, initialized to 1 granted immediately,
P, P, — Use: the process can operate on the resource
wait (A); wait(B) — Release: the process release the resource for others to

wait (B); wait(A) use.

Dept. of CSE, York Univ. 2

Prepared by Prof. Hui Jiang (CSE3221) 2/27/2007

Deadlock Characterization Resource-Allocation Graph (I)

Deadlock can arise only if four conditions hold sim ultaneously.

)) A set of vertices V and a set of edges E.
« Mutual exclusion : only one process at a time can use a resource.

.) R » Vis partitioned into two types:
« Hold and wait : a process holding at least one resource is waiting to

acquire additional resources held by other processes. - P={P,, P,, ..., P}, the set consisting of all the
processes in the system.

« No preemption : aresource can be released only voluntarily by the

process holding it, after that process has completed its task. - R={Ry, Ry, ..., R}, the set consisting of all
resource types in the system.
¢ Circular wait : there exists a set {P,, P, ..., P, , Py} of waiting . T)
processes such that P, is waiting for a resource that is held by P,, P, request edge — directed edge P, — RJ
is waiting for a resource that is held by P,, ..., P,,_, is waiting for a » assignment edge - directed edge RJ- - P
resource that is held by P, and P, is waiting for a resource that is held
by Py.

———
Example of a Resource

Resource-Allocation Graph (II) Allocation Graph

* Process O

« Resource Type with 4 instances p
= ®» @ G

* P;requests instance of R,

DN \V

 P;is holding aninstance of R,

R, (]
5

i

Dept. of CSE, York Univ. 3

Prepared by Prof. Hui Jiang (CSE3221) 2/27/2007

Basic Facts Resource Allocation Graph
With A Deadlock

« If graph contains no cycles = no deadlock. R,

R1
 If graph contains a cycle =
— if only one instance per resource type, then
deadlock. o 3 P\

. . (P { 3
— if several instances per resource type, ~ 4
possibility of deadlock.
\

N

. °
°
R, .
R,

Resource Allocation Graph With :
A Cycle But No Deadlock Methods for Handling Deadlocks

P, » Ensure that the system will never enter a deadlock
R, state.

o — Deadlock Prevention
o — Deadlock Avoidance
Ve '\
PS
P » Allow the system to enter a deadlock state and then

B detect and recover.

R * Ignore the deadlock problem and pretend that
\. deadlocks never occur in the system; used by most
o operating systems, including UNIX.

Dept. of CSE, York Univ. 4

Prepared by Prof. Hui Jiang (CSE3221) 2/27/2007

Deadlock Prevention(I) Deadlock Prevention (II)

Restrain the ways request can be made. * No Preemption —

— Allow Preemption: If a process that is holding some
resources requests another resource that cannot be
immediately allocated to it, then all resources currently being

« Mutual Exclusion — not required for sharable resourc es; must
hold for nonsharable resources.

- Nothing can be done for non-sharable resources held can be preempted by other processes.
— Preempted resources are added to the list of resources for
« Hold and Wait — must require that whenever a process requests a which the process is waiting.
resource, it does not hold any other resources. — Process will be restarted only when it can regain its old
— Protocol 1: require process to request and be alloc ated all its resources, as well as the new ones that it is requesting.
needed resources in one chunk before it begins exec ution. — If a process requests some resources:
— Protocol 2: allow process to request resources only when the « If available, allocate

process has none. « If not available but used by a waiting process, preempt
— Problems: low resource utilization; starvation possi ble. that resource

« Otherwise, the process wait (its occupied resources may
be preempted by others)

Deadlock Prevention (III)

» Circular Wait — impose a total ordering of all resource types,
and require that each process requests resources in an
increasing order of enumeration.

Organize all resources in alinear order

|R1, Rz, Rs, ... Ri, R+, ..., RN|
". hold .{

.

Q
.
* o
3,
Q
. .

.
‘

Tape device - disk device - printer

Example:

Dept. of CSE, York Univ. 5

