

Dept. of CSE, York Univ.

System Model

- A set of processes to compete resources
- Resources are partitioned into several types *R*₁, *R*₂, ..., *R*_m
 Memory space, CPU cycles, files, I/O devices
- Several instances for each resource type:
 - All instances for a resource type are identical
- Request-Use-Release model
 - Request: the process must wait if the request can not be granted immediately.
 - Use: the process can operate on the resource
 - Release: the process release the resource for others to use.

Prepared by Prof. Hui Jiang (CSE3221)

Methods for Handling Deadlocks

- Ensure that the system will *never* enter a deadlock state.
 - Deadlock Prevention
 - Deadlock Avoidance
- Allow the system to enter a deadlock state and then detect and recover.
- Ignore the deadlock problem and pretend that deadlocks never occur in the system; used by most operating systems, including UNIX.

Prepared by Prof. Hui Jiang (CSE3221)

Deadlock Prevention (II)

No Preemption –

- Allow Preemption: If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held can be preempted by other processes.
- Preempted resources are added to the list of resources for which the process is waiting.
- Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting.
- If a process requests some resources:
 - · If available, allocate
 - If not available but used by a waiting process, preempt that resource
 - Otherwise, the process wait (its occupied resources may be preempted by others)

